Pinking Shears

Base Value: 2; Worth 6 points in the Lilac Room

"This looks like an algebra problem," you tell Dr Lucky.
"Ooh! I love algebra!" Dr Lucky exclaims. "Did you know that the multiplicative group of any field is cyclic? Let's say you have a field with 27 elements - there are fields of any prime-power size, you know, so there's a field with $3^{3}=27$ elements, and so the 26 non-zero elements make up the multiplicative group, and it's cyclic! So, let's say A is a root of $x^{3}-x+1$; then A is a generator of this cyclic group..."

At this point Dr Lucky loses you, as his absent-minded mathematical brain wanders from topic to topic, and you look back at the puzzle:

$$
\begin{gather*}
\zeta^{2} \theta+\zeta^{2} \xi-J \zeta^{2}+P \theta+P \xi+M=0 \tag{1}\\
(\sqrt{\alpha+\tau+\eta})^{4}=F \tag{2}\\
\beta+\iota=Q \tag{3}\\
\left(\begin{array}{ccc}
S & C & E \\
I & G & I \\
N & W & A
\end{array}\right)\left(\begin{array}{c}
\sigma-\kappa \\
v+\nu \\
\lambda+\gamma
\end{array}\right)=\left(\begin{array}{c}
S \\
T \\
X
\end{array}\right) \tag{4}\\
\epsilon^{2}+\mu^{2}+\delta^{2}+\zeta^{2}-\epsilon \mu-\delta \zeta+\epsilon \delta+\epsilon \zeta+\mu \delta+\mu \zeta+P \epsilon+P \mu-P \delta-P \zeta+F=0 \tag{5}\\
\varphi+\omega \tag{6}\\
\frac{\varphi+\psi}{}=Y \tag{7}\\
\begin{array}{l}
T \pi+U \rho+S \chi=E \theta^{2}-R \xi^{2}+R \theta \xi \\
\beta \theta+\alpha \iota+\beta^{2}+\sigma \iota+\beta v+\lambda \iota+\beta \delta+\varphi \iota+\beta \pi+\theta \iota+\beta \alpha+\beta \iota+\beta \sigma+v \iota+\beta \lambda+\delta \iota+\beta \varphi+\pi \iota=U \\
\omega+A \psi+B \chi+C \varphi+D v= \\
\\
\\
\frac{\left(\sqrt{\omega^{2}+B \psi^{2}+D \chi^{2}+F \varphi^{2}+H v^{2}-A \omega \psi-B \omega \chi}\right.}{-C \omega \varphi-D \omega v-C \psi \chi-D \psi \varphi-E \psi v-E \chi \varphi-F \chi v} \\
\frac{-G \varphi v+V \omega+W \psi+X \chi+Y \varphi+Z v}{8}=R \\
\theta+\epsilon+o=T \cdot H \cdot E \cdot O \\
\sqrt[6]{\kappa^{3}+\iota^{3}+\lambda^{3}+\lambda^{3}}=B \\
A(\kappa+\iota-\lambda+D \rho+L \cdot U \cdot C \cdot K \cdot Y)=\kappa+\iota+2 \lambda \\
\eta+\pi^{2} \theta+P \xi=-A \chi \\
(K+D+L)(P \gamma+U \zeta+Z \nu+Z v+L \alpha+E \epsilon)=(H+U+N+T-1) \\
\alpha+Y \tau=A
\end{array} \tag{8}
\end{gather*}
$$

$$
\begin{gather*}
\frac{D-\pi \theta}{\alpha \beta-J \iota}=K+D+L \tag{17}\\
\iota+\kappa-N=\sqrt[3]{J \iota-W \kappa+W \cdot N+\iota^{3}+\kappa^{3}-N^{3}} \tag{18}\\
P=\frac{\beta}{J-\sigma}+\frac{\alpha \beta-J \iota}{D-\pi \theta} \tag{19}\\
\epsilon-\zeta=A \tag{20}\\
\mu^{7}+\mu^{6} \nu-\mu^{4} \nu^{3}-\mu^{3} \nu^{4}+\mu \nu^{6}+\nu^{7}=E \tag{21}\\
\frac{V \nu+U v}{\eta \sigma \rho+N \cdot O \cdot P}=D \tag{22}
\end{gather*}
$$

